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PURPOSE: To describe mathematically a specific method for allocating time and
frequency in communication satellite systems that use time-frequency multi-

plexing for random multiple access.

SCOPE: Algorithms are shown for constructing low-interference address codes for
such systems, for various sizes of time-frequency matrices and address lengths.
In these codes, the number of addresses, or code words, containing a given ("
chip is KM/N, where K is the number of words, M is the number of chips in an i
address, and N is the number of chips in the time-frequency matrix. The ratio
can be made as large as desired while, at the same time, M remains fixed.
This is done by increasing N, which amounts to an increase in system bandwidth,
and/or an increase in the time length of the matrix. As N increases, the maxi-
mum number of addresses also rises. Hence, since N is a measure of the total '”‘
data rate of the system, the increase in size of the time-frequency matrix does
not necessarily cause wasted bandwidth,
In practice, KM/N will be limited by considerations entirely divorced from
the mathematics of code construction. Some of these factors include the duty
cycle of an address, system noise, and the manner of detecting a message. Thus
the requirement that any two addresses have, at most, one common chip (which
drastically curbs the incidence of serious interference) will not usually be
the factor that limits the number of system users.
Because consideration is confined to the mathematics of time and frequency
assignments, no attempt has been made to extend the discussion to problems of

establishing and monitoring circuits or of actual system design,

BACKGROUND: This is part of RAND's research for the National Aeronautics and Space
Administration on communication satellite multiple-access techniques. See also

RM-4298-NASA, Multiple-Access Techniques for Communication Satellites: I, Sur-

vey of the Problem, September 1964,
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PREFACE

This Memorandum is part of RAND's continuing study of multiple-
access techniques for communications satellites for the National
Aeronautics and Space Administration. It presents a method of allo-
cating time and frequency in systems employing time-frequency
multiplexing which may prove useful for systems in which a user can
transmit at any time without consulting a central controller--
so-called random access systems.

Only the mathematics of time and frequency assignments are
discussed in this Memorandum. It is not concerned with problems of

establishing and monitoring circuits or of actual system design.



SUMMARY

In recent years the problem of providing multiple access to a
communication satellite has been extensively studied, and various
modulation methods have been proposed to fit different system require-
ments. One attractive method for random multiple access is time-frequency
multiplexing. Large numbers of users are accommodated by allowing time-
frequency assignments to overlap. However, it is also necessary to
limit interference levels in any practical system.

In this Memorandum, a specific method of constructing addresses from
a time-frequency matrix is developed which applies to many matrix sizes
and many address lengths. As many addresses as possible are constructed
so that no two of them have more than one chip in common. At the same
time, for a fixed address length, the number of addresses containing a
given chip can be made arbitrarily large and will, in fact, be almost
exactly proportional to the number of chips in the time-frequency matrix.

The effect of requiring that any address contain at most one chip
from each column of the matrix is examined. When the number of columns
is equal to the address length each address has exactly one chip from
any column. This requirement reduces the number of allowable addresses,

but the reduction has no practical significance.

PHECEDING PAGE BLANK NCT FILMED.
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I. INTRODUCTION

In recent years the problem of providing multiple access to a
communication satellite has been extensively studied,(l-S) and
various modulation schemes have been advanced to fit varying system
requirements. One modulation method which has been proposed is time-

(4,5) which appears especially attractive for

frequency multiplexing,
random multiple access. In a system employing this type of modulation,
an area in time-frequency space is divided into contiguous equidimensional
rectangular segments comprising the elements of a matrix (see Fig. 1).
Each element is occupied by a basic waveform, e.g., a sinusoidal

pulse, in such a way that the waveforms (commonly called the chips of
the matrix) are pairwise orthogonal. Also, each chip will usually

have the same energy.

In a given system addresses will be formed from the chips of the
matrix and each address will consist of the same number of chips. The
various transmitter-receiver pairs using the satellite will each be
assigned one or more of these addresses. A given chip will, in general,
appear in many addresses, but much of the utility of this type of
multiple access depends upon constructing the addresses in such a way
as to minimize interference, and to allow a large number of system
users. In some cases it is desirable to transmit continuously; this
requires an address having exactly one chip from each column of the
matrix and poses an additional constraint.

This Memorandum describes a method of constructing sets of addresses
for a time-frequency multiplex system which exhibits many desirable

properties, Minimal interference is guaranteed by demanding that any




t

Fig.1—A time frequency matrix for r=4, s=8




two addresses have at most one common chip, and by the symmetry of the
construction to facilitate analysis of system performance. In addition,
it is also possible to satisfy the requirement of continuous transmission

without losing the ability to accommodate large numbers of users.




II. LATIN SQUARES

The construction of the codes in this Memorandum is based upon
the theory of Latin squares. A Latin square of order n is an n x n
matrix of n symbols, e.g., the integers between 1 and n arranged so that

each of them appears once in each row and once in each column. Thus,

= M
1 2 3 & 5
5 1 2 3 4
s =4 5 1 2 3
3 4 5 1 2
|2 3 4 5 1|

is a Latin square of order 5. Given two Latin squares S and S’ of

order n, the array of their ordered pairs can be formed

¢ '} F
(5110511)  (85581)) =+ o (51.58))
t 1
. (8515859) (85,959)
(s,8%) =
I 4
(snl’snl) ' ' : (snn’snn)

The squares are said to be orthogonal if each of the n2 possible

ordered pairs appears exactly once in the array. For example, if




—

and
3
s’ = 2
2 3 1
then

(1,1) (2,2) (3,3)
(5,8 = |(2,3) (3,1) (1,2)
(3,2)  (1,3) (2,1)

so S and S’ are orthogonal. A well-known fact based on Galois field
theory(6) is that if n is a power of a prime, then there is a set
of n -~ 1 pairwise orthogonal Latin squares of order n.(7) To construct

them for GF(pk), the field of pk elements, let

k
GF(p ) = {fo =0, f1 =1, f2, ey f( K 1)}
p-

where O is the additive identity and 1 is the multiplicative identity.

The jth Latin square will be(8)
0 1 . . . o . . t
(pk-1)
£ £.+1 £ +f £,+£
! : 12 37 %)
= f f f f +1 . . . . - f-f +f
Sj jv2 j2 jt2 (pk-l)
£.£ £.£ , . +1 . . . f.f +f
3 (p*-1) 37 (pk-1) 3T (pk-1)




To observe that any two of them, for instance Sj and Sm, are orthogonal,
assume that an ordered pair (fr,fs) occurs twice in (Sj,Sm), e.g., in

the o™ row and the Bth column and in the yth row and the éth column.

Then
£o= £+ fg = FiE ¥ £
£ = ffar + fpor = foufyr t %5
Thus

fa-l(fj i fy-l(fj -

But, since j # m, this means that o = vy, which in turn implies that
B = §. Thus the squares are orthogonal. The application of these

ideas to the construction of actual codes will be illustrated in the

next section.




IIT. A CLASS OF CODES

Recall that a time-frequency matrix is an r by s matrix of con-
tiguous rectangular cells in time-frequency space, each having the same

dimensions (see Fig. 1). The cells are numbered from 1 to N, where
N=rs

It is desired to form a code in which each word consists of M out of
the N cells and in which there are K words. Each code word will be
an address of a system user. In general, each cell will appear in

many different addresses. Thus
KM >N

It is desirable that available time-frequency space be shared by as

many users as possible, i.e., that

X
N

be large, while at the same time it is desirable that any two
addresses have minimal overlap. If, in addition, each cell is used in
the same number of addresses, then the calculation of system performance
is greatly simplified. These last two requirements are stated as a
coding problem and the class of codes constructed will allow arbitrarily
high ratios of KM to N.

Problem: Assume there are N elements from which it is desired to
form a code consisting of K code words, each formed from M elements out

of the N. It is further required that:



1. Each of the N elements appears in the same number of
code words.

2. No two code words contain more than one common element.

Then for given values of M and N, what values of K are possible? 1In
particular, what is the largest possible value of K? The size of this
maximal code will be denoted by Kmax(N’M)' Any code satisfying the
above two requirements will be called acceptable.

Two important special cases of acceptable codes will be those with
words which have at most one element from each column of the time-
frequency matrix, and those with words which have exactly one element
from each column of the matrix. This latter will be continuous
transmission or cw codes, which greatly simplify system implementation.

In the next section, it will be shown if p = qk, where q is the

prime > 1 and k 2 1, and if M= p and N = pn, where n =2 1, that:

-1pt -1

n n
1' Kmax(P ’p) = p P - 1

2. 1If the time-frequency matrix is of the size pn-k X pk, for

0 < k < n, then an acceptable code of size

p-1
can be found, the words of which have at most one element
from any given column of the matrix. In particular, if the

matrix is of size pn-1 x p, there is a cw code in which each

word has exactly one element from each column of size

K = p2n-2




3. 1If
a=0o0rl
and

b=0,1, .o, p

then acceptable codes exist for

n-2
K = apn-l + bpn-l P - 1

4. Acceptable codes can be found for

K= cpn-1 + dpn

where a and b are as before and

c=0or 1l

p2 _

d=a+b > - 1

The proofs are rigerous but are also algorithmic. In addition, cencrete

examples of code construction are provided.
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IV. EXISTENCE AND CONSTRUCTION OF ACCEPTABLE CODES

Now the existence of acceptable codes for the previously enumer-
ated values of K will be demonstrated and exemplary codes will be con-
structed.

Remark: If q is a prime and p = qk for k = 1, then
K (7, p) = p(p+l)
nax P » P/ = PP

Proof: Arrange the p2 elements in a p x p matrix

-
an 22 41p
ay; . azp

A =
a . . . . . a

pl PP

Enumerate a set of p - 1 palrwise orthogonal Latin squares of order p,
composed of integers 1, 2, °*+, p. Pick any of the Latin squares,

e.gs5, S, where

S11 512 PR S1p
321 e o o o o 82p
S =
. [ ] [ ] [ ] [ ] . [ ] [ ] S'
®p1 PP




1L

and form code words Wl, W2, cee, WP’ each word being a set of p

elements of § according to the rule:
aij €W if and only if sij = m

i.e., the mth word contains the elements of A which are in the same
location of the matrix A as m is in the Latin square S. This will
result in p code words which will be disjoint sets of p elements each.
Now the same is done for each of the p - 1 Latin squares obtaining
p(p-1) words. It has been seen that any two words derived from the
same square are disjoint. Now consider two words derived from different
squares, e.g., Wu from S and Wv from S’. They will have exactly one
element of A in common, since the ordered pair (u, v) will appear in
one place of (S, S’), the array of ordered pairs defined in Section II.
Thus, the set of p(p-1) words has the property that any two contain

at most one common element. To this set can be added the p rows and

p columns of A, since in no Latin square does any element appear twice
in any row or in any column. Thus, an acceptable code of p(p+l) werds

has been constructed, showing that

2
K ox(P7s P) 2 p(ptl)

This will be proven to be an upper bound. If any element is chosen
from A and it is desired to form as many words as possible using it
with each other element at most once, then, since there are p - 1
places left to fill and p2 - 1 elements left to fill them with, there

are at most

2.3
il
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words containing the given element. If each of the p2 elements is
contained in this many words, then the sum of the lengths of all

words in the code is

2
P (ptl)
But since there are p elements per word
K (p%, p) < p(ptl)
max - ?

Therefore

2

ax(P > P) = p(ptl)

To illustrate this remark, a code having 20 words will be found

for

M =4

N =16

First the three orthogonal Latin squares will be found. The addition

and multiplication tables for GF(4) are

+ 0 1 X 1+x 0 1 X 14x
0 0 1 x 14x 0 0 0 0 0
1 1 0 14x X 1 0 1 X 14x
X X 14x 0 1 x 0 X 1+x 1
I4x | 14x X 1 0] 1+x | O 14x 1 X

Using as a correspondence of GF(4) with {1, 2, 3, 4}
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01
12
x> 3
l+x >4

the Latin squares are

0 1 X 14x
1 0 14x X
X 1+x 0 1 <:;>
1+x X 1 0
(0 1 x  l4x |
X 14x 0 1
14x x 1 0 <;:;>
1 0] 14x x
_O 1 X 1fx-
14x X 1 0
1 0 14x x <§:§>
X l4x 0 1
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Letting

13 14 15 16

the 20 code words are (1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12),

(13, 14, 15, 16), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15),

4, 8, 12, 16), (1, 6, 11, 16), (2, 5, 12, 15), (3, 8, 9, 14), (4, 7,
10, 13), (1, 7, 12, 14), (2, 8, 11, 13), (3, 5, 10, 16), (4, 6, 9, 15),

(1, 8, 10, 15), (2, 7, 9, 16), (3, 6, 12, 13), and (4, 5, 11, 14).

This result is not very useful for the application proposed here, but
the generalization provided by the following theorem is. It should
be noted that it is equivalent to the existence of an incomplete

balanced block design with parameters

n
V=P

n
b = pn-l p ~1

p-1
N S |
-1
k.= P
A=1

Though this design is known,(g) the following proof presupposes no

knowledge of projective geometry, while illustrating actual application

of the result.
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Theorem 1: Let q be a prime and p = qk for k 2 1, and let

Then

n
LE_-1 for n 2 2

n n
K ax(P s P)=p P -1

Proof: 1Induction on n will be used. For n = 2, apply the preceding

remark, Now assume the theorem is true for n < t - 1, i.e., assume

t-1
t-1 _t=2p -1
Kax(P > P)=p > -1

t
Now Kmax(p s p) will be determined. Set

N= pt

Arrange the elements in a pt-l X p matrix

apt-lyy © ¢ 3pthy

Since there are pt-1 rows, the induction hypothesis implies that they

-1, p) p x p matrices such that no two

t
can be used to form Kmax(p
matrices have more than one row in common, and such that each row is

used in the same number of p x p matrices. Using the same argument
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as before, from each of these matrices, p2 code words can be con-
structed such that no two words have more than one element in common
without using rows as words. Since no two p x p matrices have more
than one common row, any word from one matrix will have at most one
element in common with any word from another matrix. Hence, this pro-

cedure will yield

t-1 t-1
words. To these, add the p rows of the p x p matrix. This will

yield an acceptable code with

p -1
words. Exactly the same reasoning used in the proof of the remark

shows this number to be an upper bound for Kmax(pt’ p). Thus, the

theorem is proved, i.e.,

1p -1

n n-
K x(P>P)=p 5 -1

To illustrate the application of the theorem let

There are 27 elements arranged as shown next:




10

13

16

19

22

25

and

11
14
17
20
23

26

17

12
15
18

21

27

Two orthogonal Latin squares of order

SN

NS SR I

three are



18

These dictate the rows of six of the 3 x 3 matrices. The rows and
columns of R dictate the others. Thus there will be twelve 3 x 3
matrices with rows (Rl’RZ’R3)’ (R4,R5,R6), (R7,R8,R9), (Rl,R4,R7),
(Rz’RS’RS) b ] (R3’R6’R9) b (R13R4,R7) ] (R2’R6,R7> 3 (R3’R4’R8) 2 (Rl’R6’R8)’

(R2,R4,R9), and (R3,R5,R7). For example, the fourth 3 x 3 matrix will

be
1 2 3
(RI’RA’R7) =] 10 11 12
19 20 21

The 32 = 9 words formed from it using its columns and the same Latin
squares will be (1,10,19), (2,11,20), (3,12,21), (1,11,21), (2,12,19),
(3,10,20), (1,12,20), (2,10,21), and (3,11,19). The rest of the 3 x 3
matrices are treated similarly, and the nine rows are added to the code,
yielding

3
K (375 3) = 117

words.

.

Remark: If the time-frequency matrix is of size pn X pk,
where O < k < n, then an acceptable code of size

n-1
" - "N

K=—=7

can be constructed, and any given word of this code will have at most one
element from any column of the matrix. In particular, for k=1,
there is a code of size

- 2n-2
cw P

in which every word has exactly one element from each column. This is

the cw case.
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Proof: If k = 0, the matrix has ene column, and no words can be formed.

This agrees with the above remark. If k = n, the code having

Kmax(pn’ p) elements from Theorem 1 can be used, since each column

has only ene element, and this is the value given above in the case

k=n, If k=n -1, let each column correspond to a row of the

pn-1 x p matrix in the proof of Theorem 1, and eliminate words consisting

of a row. No other words will have two elements from the same column

of the time-frequency matrix and there will be

n .-l _ n-lp -p
K ax(P>P)-p P > -1

words left. For 1 < k< n - 2, let each column correspond to pn-k‘-1
rows of the pn-1 x p matrix in Theorem 1. Use these rows to make

Kmax(pn-k-l, p) of the p x p matrices from before. Eliminate all

words derived from these matrices. Thus, since there are pk TOWS,

eliminate
k2, onkl o n Tl o
P maxp s P p p -1

words from the code of size K (pn, p), and in addition eliminate the

max
pn-1 row words from the pn-l x p matrix. There will be left a code of
size
K __(°, p) - p" En-k-Z =1 _ n-l1_ n-l p" - gn-k
max'\P * P P p - 1 P P p-1

which proves the remark. Setting k = 1 demonstrates the existence of
a code in which each word contains exactly one element from each column

of the time-frequency matrix of size

n 2n-2
ch(P ’ p) = p
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For the example following the proof of Theorem 1, if the time-

frequency matrix is

1 10 19 T
2 11 20
3 12 21
4 13 22
5 14 23
6 15 24
7 16 25
8 17 26
L 9 18 27 i
then a cw code of size
34 = 81

is obtained by eliminating the nine original row words and the words from
matrices containing (Rl’ R2, R3), (R4, RS’ R6), and (R7, Rg, Rg).

Remarks Acceptable codes can be found having size

n-2
n-1 n-1l P -1
» P) = ap + bp p -1

K= apn-1 + prmax(pn-I

where

a=0o0r1l

b=0, 1, seeo, P

Proof: To construct such a code, if a = 0 do not use the rows of the
pn-1 x p matrix. If b < p, use only b of the p - 1 orthegenal Latin
squares of order p in determining words to be formed from the p x p
matrices. Recall that since there are Kﬁax(pn-l, p) of such matrices,
this procedure will yield the prmax(pn'l, p) words. If b = p,

use all p - 1 Latin squares, and in addition form words from the columns

of each p x p matrix.
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There are also other possible sizes of K, as the following
theorem shows:

Theorem 2: Let p = qk, where q is a prime, and k =2 1. Then
acceptable codes exist for

K = cpn-1 + dpn

where, as before,

M=p
N = pn
Here
c=0,1
n-2
dma+pB—=l
p -1

and a and b are as in the preceding remark.
Proof: As before, arrange the pn elements into a matrix having pn"1
rows of p elements. By the last remark these rows can be used to form

a set of

n-2
ap + pr.ula (p

-2
% " s P)

p X p matrices such that each row is used in the same number of matrices

and no two matrices have more than one common row, where

a=0,1
b=0,1, «eo, p

From each of these matrices, p2 code words can be obtained using no

words consisting of entire rows. Hence, acceptable codes exist for

3 n-2

K = ap” + bp ® % P

K
max

= dpn
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The pn rows can be added to these, if desired (¢ = 1), or not included

(c = 0), proving the theorem.




V. _CONGLUSIONS

Algorithms have been shown for constructing low interference
address codes for a system employing time-frequency multiplexing for
various sizes of time-frequency matrices and address lengths. In
these codes the number of addresses containing a given chip is %%,
which can be made as large as desired while, at the same time, M (the
number of chips in an address) remains fixed. This is done by increasing
N (the number of chips in the time-frequency matrix), which amounts
to an increase in system bandwidth, and/or an increase in the time

length of the matrix. Note that as N is increased, the maximum number

of addresses also rises. 1In fact, for fixed M

2
Kmax(N’ M aN

almost exactly. Hence, since N is a measure of the total data rate of
the system, the increase in size of the time-frequency matrix does not
result in wasted bandwidth.
In practice, %? will be limited by considerations entirely
divorced from the mathematics of code construction. Some of these
factors will be the duty cycle of an address, system noise, and the
manner of detecting a message. Thus, perhaps the most important fact
to note is that the requirement that any two addresses have at most one
common chip, which drastically curbs the incidence of serious interference,

will not usually be the factor which limits the number of system users.
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